Become a member

Get the best offers and updates relating to Liberty Case News.

― Advertisement ―

spot_img

Cung hoàng đạo của Cristiano Ronaldo là gì?

Cristiano Ronaldo, người nổi tiếng với sự nghiệp bóng đá vĩ đại, cũng có một cung hoàng đạo đầy tính cách và năng lượng....
Trang chủLớp học Mật NgữLớp 6Lũy thừa là gì? Cách tính lũy thừa Toán lớp 6

Lũy thừa là gì? Cách tính lũy thừa Toán lớp 6

Lũy thừa là một phép toán sẽ được học ở chương trình Toán lớp 6. Lũy thừa có nhiều ứng dụng trong toán học cũng như thực tiễn. Vậy lũy thừa là gì? Cách tính lũy thừa như thế nào? Bài viết dưới đây của Lớp học Mật Ngữ sẽ cung cấp cho bạn những thông tin cơ bản nhất về lũy thừa.

Trong chương trình Toán học lớp 6, ta sẽ được tìm hiểu về lũy thừa với số mũ tự nhiên. Đây là một kiến thức rất quan trọng bởi lũy thừa được lặp lại trong rất nhiều dạng toán và có tính ứng dụng cao.

1. Lũy thừa với số mũ tự nhiên

Lũy thừa bậc n của a, kí hiệu là a^n, là tích của n thừa số a: a^n = a.a.a…a (n thừa số a) với n là số tự nhiên.

Số a được gọi là cơ số, n được gọi là số mũ.

Ta quy ước: a^1 = a; 1^n = 1; a^0 = 1

Phép nhân nhiều thừa số bằng nhau gọi là phép nâng lên lũy thừa.

Chú ý: a^n đọc là “a mũ n” hoặc “a lũy thừa n” hoặc “lũy thừa bận n của a”

a^2 còn được gọi là “a bình phương” hay “bình phương của a”.

a^3 còn được gọi là “a lập phương” hay “lập phương của a”.

0^n không có nghĩa.

Với n là số tự nhiên khác 0, ta có: 10^n = 100….0 (n chữ số 0)

2. Tính chất của lũy thừa với số mũ tự nhiên

– Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ: a^m.a^n = a^m+n

– Khi chia hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và trừ các số mũ: a^m : a^n = a^m-n (a khác 0, m >= n)

Mở rộng:

(a.b)^n = (a.b).(a.b)….(a.b) (gồm n thừa số a.b) = a^n. b^n

(a : b)^n = (a. a. a… a) : (b. b.b… b) (gồm n thừa số a, n thừa số b) = a^n : b^n (b khác 0)

(a^n)^m = a^n. a^n. a^n… a^n (gồm m thừa số a^n) = a^n.m

3. Thứ tự ưu tiên thực hiện phép tính

Thứ tự ưu tiên thực hiện phép tính đối với biểu thức có dấu ngoặc: ( ) -> [ ] -> { }

Thứ tự ưu tiên thực hiện phép tính đối với biểu thức không có dấu ngoặc: Lũy thừa -> nhân và chia -> cộng và trừ

4. Các dạng bài tập về lũy thừa với số mũ tự nhiên thường gặp

4.1. Dạng 1: Viết kết quả phép tính nhân, chia dưới dạng lũy thừa

Phương pháp giải: Để viết kết quả phép tính dưới dạng lũy thừa, ta biến đổi phép tính về dạng phép nhân các lũy thừa cùng cơ số hoặc phép chia hai lũy thừa cùng cơ số, rồi áp dụng quy tắc nhân các lũy thừa cùng cơ số hoặc chia hai lũy thừa cùng cơ số để viết gọn kết quả.

Ví dụ 1: Viết gọn các tích sau bằng cách dùng lũy thừa

a) 3. 3. 3. 3. 7. 7. 7

b) 1000. 10000. 100000

Trả lời:

a) 3. 3. 3. 3. 7. 7. 7 = 3^4. 7^3

b) 1000. 10000. 100000 = 10^3. 10^4. 10^5 = 10^3+4+5 = 10^12

Ví dụ 2: Viết kết quả phép tính dưới dạng một lũy thừa

a) 5^2. 5^3. 5^4

Trả lời: 5^2. 5^3. 5^4 = 5^2+3+4 = 5^9

b) 8^7 : 8^3 

Trả lời: 8^7 : 8^3 = 8^7-3 = 8^4

c) 4^5 : 2^7

Trả lời: 4^5 : 2^7 = (2^2)^5 : 2^7 = 2^10 : 2^7 = 2^3

4.2. Dạng 2: So sánh các số viết dưới dạng lũy thừa. Tìm số mũ của lũy thừa

Phương pháp giải: Để so sánh các số viết dưới dạng lũy thừa, ta có thể làm theo 3 cách sau đây:

Cách 1: Đưa lũy thừa về cùng cơ số là số tự nhiên rồi so sánh hai số mũ

Nếu m > n thì a^m > a^n

Cách 2: Đưa lũy thừa về cùng số mũ rồi so sánh hai cơ số

Nếu a > b thì a^m > b^m

Cách 3: Tính cụ thể từng lũy thừa rồi so sánh

Ví dụ 1: So sánh hai số sau:

a) 2^100 và 1024^8

Trả lời:

1024^8 = (2^10)^8 = 2^10.8 = 2^80

Vì 80 < 100 nên 2^80 < 2^100, do đó 1024^8 < 2^100

b) 222^333 và 333^222

Trả lời:

222^333 = (222^3)^111 ; 333^222 = (333^2)^111

Ta cần so sánh 222^3 và 333^2

Ta có: 222^3 = (2. 111)^3 = 2^3. 111^3 = 8. 111^3 = 888. 111^2 ; 333^2 = (3. 111)^2 = 3^2. 111^2 = 9. 111^2

Vì 888. 111^2 > 9. 111^2 nên 222^3 > 333^2. Do đó 222^333 > 333^222

Ví dụ 2: Tìm số tự nhiên n sao cho:

a) 3^n = 81

Trả lời: Vì 81 = 3^4 nên 3^n = 3^4. Suy ra n = 4

b) 5^n < 90

Trả lời: Vì 5^2 < 90 < 5^3 nên từ 5^n < 90 ta có thể suy ra n <= 2. Tức là n = 0; 1; 2

c) 14 < 6^n < 50

Trả lời: Vì 6 < 14 < 6^n < 50 < 6^3 nên 1 < n < 3. Tức là n = 2

4.3. Dạng 3: Tim chữ số tận cùng của một số dạng lũy thừa

Phương pháp giải: Dựa vào các tính chất sau đây để tìm chữ số tận cùng của một số dạng lũy thừa

– Một số chính phương (là bình phương của một số tự nhiên) có tận cùng là 0, 1, 4, 5, 6, 9

– Một số nguyên tố lớn hơn 5 chỉ có thể tận cùng bằng 1, 3, 7, 9

– Chữ số tận cùng của a^n chính là chữ số tận cùng của x^n (với x là chữ số tận cùng của a)

– Các số có chữ số tận cùng là 0, 1, 5, 6 khi nâng lên lũy thừa bậc bất kỳ thì chữ số tận cùng vẫn không thay đổi

– Các số có chữ số tận cùng là 4, 9 khi nâng lên lũy thừa bậc lẻ thì chữ số tận cùng vẫn không thay đổi

– Các số có chữ số tận cùng là 3, 7, 9 khi nâng lên lũy thừa bậc 4n (n là số tự nhiên) thì chữ số tận cùng là 1

– Các số có chữ số tận cùng là 2, 4, 8 khi nâng lên lũy thừa bậc 4n (n là số tự nhiên) thì chữ số tận cùng là 6.

– Một số tự nhiên bất kì khi nâng lên lũy thừa bậc 4n + 1 (n là số tự nhiên) thì chữ số tận cùng vẫn không thay đổi

– Số tự nhiên có chữ số tận cùng là 3 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 7; số tự nhiên có chữ số tận cùng là 7 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 3

– Số tự nhiên có chữ số tận cùng là 2 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 8; số tự nhiên có chữ số tận cùng là 8 khi nâng lên lũy thừa bậc 4n + 3 sẽ có chữ số tận cùng là 2

– Các số tự nhiên có chữ số tận cùng là 0, 1, 4, 5, 6, 9 khi nâng lên lũy thừa bậc 4n + 3 sẽ không thay đổi chữ số tận cùng.

– Chữ số tận cùng của một tổng các lũy thừa được xác định bằng cách tính tổng các chữ số tận cùng của từng lũy thừa trong tổng

Ví dụ 1: Tìm chữ số tận cùng của 7^99

Trả lời: Ta có 99 = 4n + 1 (n thuộc N) do đó 7^99 có tận cùng là 7

Ví dụ 2: Tìm chữ số tận cùng của tổng A = 2^1 + 3^5 + 4^9 + … + 2004^8009

Trả lời:

Mọi lũy thừa trong tổng A đều có số mũ ở dạng 4n + 1 với n = 0, 1, 2, …., 2002. Do đó mọi lũy thừa trong tổng A và các cơ số tương ứng đều có cùng chữ số tận cùng.

Ta có: (2 + 3 + 4 + … + 9) + 199.(1 + 2 + 3 + …. + 9) + (1 + 2 + 3 + 4) = 200.(1 + 2 + 3 + … + 9) + (2 + 3 + 4) = 9009.

Vậy chữ số tận cùng của tổng A là 9.

Trên đây là bài viết của Lớp học Mật Ngữ về chủ đề Lũy thừa là gì? Cách tính lũy thừa Toán lớp 6. Lũy thừa là một kiến thức nền tảng trong chương trình môn toán lớp 6 và đã gây ra không ít khó khăn cho các bạn học sinh khi tìm hiểu và làm bài tập. Vì vậy, hy vọng những nội dung về lũy thừa được Lớp học Mật Ngữ tổng hợp trên đây đã đem đến cho bạn nhiều thông tin bổ ích và giúp các bài toán về lũy thừa trở nên dễ dàng hơn.