Định lý Pytago là gì? Công thức và bài tập áp dụng Toán lớp 7

0
14

Định lý Pytago là một định lý cơ bản của Toán học, được học trong chương trình Toán học lớp 7. Trong bài viết này, Lớp học Mật Ngữ sẽ cùng các bạn tìm hiểu về định lý Pytago, công thức và bài tập áp dụng công thức này.

1. Định lý pytago là gì?

Mối liên hệ giữa các cạnh trong tam giác vuông đã được con người phát hiện từ thời cổ đại, trước cả Pytago, từ văn minh Ai Cập tới vùng Lưỡng Hà, văn minh Ấn Hằng tới văn minh Trung Hoa cổ đại. Tuy nhiên phải tới thời kỳ của nhà toán học Pytago tức thời Hy Lạp cổ đại, định lý nayf mới được chứng minh và áp dụng rộng rãi trong toán học. Không chỉ ứng dụng trong hình học đơn giản, Pytago được ứng dụng phổ biến trong các lĩnh vực toán học như vi phân, tích phân, hình học không gian … Vì vậy, định lý Pytago được coi là một thành tựu thúc đẩy sự phát triển của cả nền toán học.

Định lý Pytago được áp dụng cho việc tính độ dài các cạnh trong một tam giác vuộng. Đây là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông.

Định lý Pytago thuận phát biểu rằng: Trong một tam giác vuông bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh góc vuông.

Theo chiều ngược lại, định lý Pytago nghịch phát biểu rằng: Một tam giác có bình phương một cạnh bằng tổng bình phương hai cạnh còn lại thì tam giác đó là tam giác vuông.

Định lý Pytago dùng để dựng đoạn thẳng vô cước, biểu hiện độ dài của các cạnh của một tam giác vuông mà cả ba độ dài này là những số nguyên dương.

2. Công thức định lý pytago

Cho tam giác ABC vuông tại A. Có độ dài cạnh AB = a, AC = b, BC = c. Áp dụng định lý Pytago, công thức về mối liên hệ giữa các cạnh trong tam giác được biểu diễn như sau:

Định lý Pytago là gì? Công thức và bài tập áp dụng Toán lớp 7

Do vậy, khi ta biết độ dài 2 cạnh của tam giác vuông, dựa vào định lý Pytago ta có thể tính được độ dài cạnh còn lại.

Công thức định lý Pytago đảo:

Nếu tam giác ABC có bình phương độ dài cạnh BC bằng tổng bình phương độ dài hai cạnh AB và AC thì suy ra góc BAC = 90 độ.

Do vậy, định lý Pytago đảo được ứng dúng để nhận biết tam giác vuông. Phương pháp giải dạng bài này có thể được liệt kê theo các bước:

3. Cách chứng minh định lý Pytago

Ta có thể chứng minh định lý Pytago đơn giản qua hình dưới đây:

Định lý Pytago là gì? Công thức và bài tập áp dụng Toán lớp 7

Ở hình trên ta có 2 hình vuông lớn có diện tích bằng nhau là ( a + b ) ^ 2

Trong mỗi hình lại có 4 tam giác vuông bằng nhau có diện tích bằng nhau là 1/2 ( a.b ). Do đó diện tích khoảng trắng của 2 hình sẽ bằng nhau.

Như vậy, diện tích hình vuông c sẽ bằng tổng diện tích của 2 hình vuông a và b nên ta có: c ^ 2 = a ^ 2 + b ^ 2

Cách giải này cũng được áp dụng trong việc giải bài 7 trang 129 của SGK toán 7 tập 1.

4. Bài tập áp dụng định lý pytago theo chương trình Toán lớp 7

Bài tập 1: Tìm độ dài x trên hình sau:

Định lý Pytago là gì? Công thức và bài tập áp dụng Toán lớp 7

Hướng dẫn giải:

Áp dụng định lý Pytago, ta có:

Tam giác ABC vuông tại B

=> x ^ 2 + 8 ^ 2 = 10 ^ 2

=> x ^ 2 = 10 ^ 2 – 8 ^ 2 = 6 ^ 2 = 36

=> x = 6 (cm)

Bài tập 2: Cho tam giác ABC có AC = 5 cm, BC = 3 cm, AB = 4 cm. Tam giác ABC là tam giác gì?

Hướng dẫn giải:

Ta có : AC ^ 2 = BC ^ 2 + AB ^ 2 ( vì 5 ^ 2 = 3 ^ 2 + 4 ^ 2 )

Nên tam giác ABC vuông tại B ( định lý Pytago đảo ).

Bài tập 3: Xét tam giác ABC vuông tại A:

1. Biết chiều dài cạnh AB = 4 cm, chiều dài cạnh BC = 6 cm, tính chiều dài cạnh AC

2. Biết chiều dài cạnh AC = 2 cm, chiều dài cạnh BC = 7 cm, tính chiều dài cạnh AB

3. Biết chiều dài cạnh AB = 3 cm, chiều dài cạnh AC = 5 cm, tính chiều dài cạnh BC

Hướng dẫn giải:

1. Ta có : BC ^ 2 = AC ^ 2 + AB ^ 2

=> AC ^ 2 = BC ^ 2 – AB ^ 2

=> AC ^ 2 = 6 ^ 2 – 4 ^ 2

=> AC = căn bậc hai của 20 ( cm ).

2. Ta có : BC ^ 2 = AC ^ 2 + AB ^ 2

=> AB ^ 2 = BC ^ 2 – AC ^ 2

=> AB ^ 2 = 7 ^ 2 – 2 ^ 2

=> AB = căn bậc hai của 45 ( cm ).

3. Ta có : BC ^ 2 = AC ^ 2 + AB ^ 2

=> BC ^ 2 = 3 ^ 2 + 5 ^ 2

=> BC = căn bậc hai của 34 ( cm )

Bài tập 4: Tính chiều dài cạnh huyền của các tam giác sau, biết:

a. Tam giác MNO vuông tại M có cạnh MO = 4 cm, cạnh MN = 5 cm

b. Tam giác PQR vuông tại P có cạnh PQ = 7 cm, cạnh PR = 6 cm

c. Tam giác BCD vuông tại B có cạnh BC = 8 cm, cạnh BD = 2 cm

d. Tam giác IKL vuông tại I có cạnh IL = 4,5 cm, cnahj IK = 8 cm

Hướng dẫn giải:

a. Vì tam giác MNO vuông tại M, NO là cạnh góc vuông, do đó ta áp dụng định lý Pytago trong tam giác vuông:

NO ^ 2 = MN ^ 2 + MO ^ 2

=> NO ^ 2 = 4 ^ 2 + 5 ^ 2

=> NO ^2 = 41

=> NO = căn bậc hai của 41 ( cm ) ~ 6,4 ( cm )

b. Vì tam giác PQR vuông tại P, QR là cạnh góc vuông. Do đó, áp dụng định lý Pytago trong tam giác vuông, ta có:

QR ^ 2 = PQ ^ 2 + PR ^ 2 

=> QR ^ 2 = 7 ^ 2 + 6 ^ 2

=> QR ^ 2 = 85

=> QR = căn bậc hau của 85 ( cm ) ~ 9,2 ( cm )

c. Vì tam giác BCD vuông tại B, CD là cạnh góc vuông. Do đó, áp dụng định lý Pytago trong tam giác vuông, ta có:

CD ^ 2 = BC ^ 2 + BD ^ 2

=> CD ^ 2 = 8 ^ 2 + 2 ^ 2 

=> CD ^ 2 = 70

=> CD = căn bậc hai của 70 ( cm ) ~ 8,4 ( cm )

d. Vì tam giác IKL vuông tại I, KL là cạnh góc vuông. Do đó, áp dụng định lý Pytago trong tam giác vuông, ta có:

KL ^ 2 = IL ^ 2 + IK ^ 2

=> KL ^ 2 = 4,5 ^ 2 + 8 ^ 2

=> KL ^ 2 = 84,25

=> KL = căn bậc hai của 84,25 ( cm ) ~ 9,2 ( cm )

Bài tập 5: Tính chiều cao của bức tường, biết rằng chiều dài của thang là 4m và chân thang cách tường là 1m.

Định lý Pytago là gì? Công thức và bài tập áp dụng Toán lớp 7

Hướng dẫn giải:

Vì mặt đất vuông góc với chân tường nên góc C = 90 độ

Áp dụng định lý Pytago trong tam giác vuông ABC ( vuông tại C ) , ta có:

AC ^ 2 + BC ^ 2 = AB ^ 2

=> AC ^ 2 = AB ^ 2 – BC ^ 2 = 4 ^ 2 – 1 ^ 2 = 16 – 1 = 15

=> AC = căn bậc hai của 15 ( m ) ~ 3,87 ( m ).

Do vậy, chiều cao của bức tường là 3,87 m.

Hy vọng bài viết trên đây của Lớp học Mật Ngữ về chủ đề Định lý Pytago là gì? Công thức và bài tập áp dụng Toán lớp 7 đã  giải đáp và củng cố một phần kiến thức hữu ích cho Quý các em. Mong trong những bài viết tới, Lớp học Mật Ngữ sẽ tiếp tục đồng hành cùng Quý các em. Xin chân thành cảm ơn!